Allosteric interactions coordinate catalytic activity between successive metabolic enzymes in the tryptophan synthase bienzyme complex
Tryptophan synthase from enteric bacteria is an alpha 2 beta 2 bienzyme complex that catalyzes the final two reactions in the biosynthesis of L-tryptophan (L-Trp) from 3-indole-D-glycerol 3'-phosphate (IGP) and L-serine (L-Ser). The bienzyme complex exhibits reciprocal ligand-mediated allosteri...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 1992-04, Vol.31 (15), p.3831-3839 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tryptophan synthase from enteric bacteria is an alpha 2 beta 2 bienzyme complex that catalyzes the final two reactions in the biosynthesis of L-tryptophan (L-Trp) from 3-indole-D-glycerol 3'-phosphate (IGP) and L-serine (L-Ser). The bienzyme complex exhibits reciprocal ligand-mediated allosteric interactions between the heterologous subunits [Houben, K., & Dunn, M. F. (1990) Biochemistry 29, 2421-2429], but the relationship between allostery and catalysis had not been completely defined. We have utilized rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy to study the relationship between allostery and catalysis in the alpha beta-reaction catalyzed by the bienzyme complex from Salmonella typhimurium. The pre-steady-state spectral changes that occur when L-Ser and IGP are mixed simultaneously with the alpha 2 beta 2 complex show that IGP binding to the alpha-site accelerates the formation of alpha-aminoacrylate [E(A-A)] from L-Ser at the beta-site. Through the use of L-Ser analogues, we show herein that the formation of the E(A-A) intermediate is the chemical signal which triggers the conformational transition that activates the alpha-subunit. beta-subunit ligands, such as L-Trp, that react to form covalent intermediates at the beta-site, but are incapable of E(A-A) formation, do not stimulate the activity of the alpha-subunit. Titration experiments show that the affinity of G3P and GP at the alpha-site is dependent upon the nature of the chemical intermediate present at the beta-active site. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00130a014 |