Phylogenetic analysis of the erythrocytic Anaplasma species based on 16S rDNA and GroEL (HSP60) sequences of A. marginale, A. centrale, and A. ovis and the specific detection of A. centrale vaccine strain
Phenotypic criteria for the identification of erythrocytic ruminant Anaplasma species has relied on subjective identification methods such as host pathogenicity (virulence for cattle or sheep) and/or the location of Anaplasma inclusion bodies within the host’s red cells. Sequence comparisons of new...
Gespeichert in:
Veröffentlicht in: | Veterinary microbiology 2003-03, Vol.92 (1), p.145-160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phenotypic criteria for the identification of erythrocytic ruminant
Anaplasma species has relied on subjective identification methods such as host pathogenicity (virulence for cattle or sheep) and/or the location of
Anaplasma inclusion bodies within the host’s red cells. Sequence comparisons of new and available GenBank Accessions were investigated to elucidate the relationships among these closely related
Anaplasma species. Twenty-one 16S rDNA and GroEL (HSP60) sequences from 13
Anaplasma
marginale (South Africa, Namibia, Zimbabwe, Israel, USA, Australia and Uruguay), three
A.
centrale (South Africa and Japan), two
A.
ovis (USA and South Africa)
, and two unknown
Anaplasma species isolated from wild ruminants (South Africa), were compared. 16S rDNA maximum-likelihood and distance trees separated all
A.
marginale (and the two wild ruminant isolates) from the two South African
A.
centrale (including original vaccine strain,
Theiler, 1911). The Japanese
A.
centrale (Aomori) demonstrated the lowest sequence identity to the remaining erythrocytic
Anaplasma species.
A.
ovis inter-species relationships could not be resolved through the 16S rDNA analyses, whereas strong bootstrap branch support is demonstrated in the GroEL distance tree using
A.
ovis OVI strain. All erythrocytic
Anaplasma species and isolates were confirmed to belong to the same cluster showing strong branch support to
Anaplasma (
Ehrlichia)
phagocytophilum with
Ehrlichia (
Cowdria)
ruminantium and
Rickettsia
rickettsii serving as appropriate out-groups. Based on
groEL sequences, a specific PCR method was developed which amplified
A.
centrale vaccine (
Theiler, 1911) specifically. This study confirms the suitability of 16S rDNA sequences to define genera and demonstrates the usefulness of GroEL sequences for defining species of erythrocytic
Anaplasma. |
---|---|
ISSN: | 0378-1135 1873-2542 |
DOI: | 10.1016/S0378-1135(02)00352-8 |