Glutathione Peroxidase-1 Contributes to the Neuroprotection Seen in the Superoxide Dismutase-1 Transgenic Mouse in Response to Ischemia/Reperfusion Injury
The authors hypothesized that glutathione peroxidase-1 (Gpx-1) contributes to the neuroprotection seen in the superoxide dismutase-1 transgenic (Sod-1 tg) mouse. To investigate this hypothesis, they crossed the Gpx-1 -/- mouse with the Sod-1 tg and subjected the cross to a mouse model of ischemia/re...
Gespeichert in:
Veröffentlicht in: | Journal of cerebral blood flow and metabolism 2003-01, Vol.23 (1), p.19-22 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors hypothesized that glutathione peroxidase-1 (Gpx-1) contributes to the neuroprotection seen in the superoxide dismutase-1 transgenic (Sod-1 tg) mouse. To investigate this hypothesis, they crossed the Gpx-1 -/- mouse with the Sod-1 tg and subjected the cross to a mouse model of ischemia/reperfusion. Two hours of focal cerebral ischemia followed by 24 hours of reperfusion was induced via intraluminal suture. The Sod-1 tg/Gpx-1 -/- cross exhibited no neuroprotection when infarct volume was measured; indeed, infarct volume increased in the Sod-1 tg/Gpx-1 -/- cross compared with the wild-type mouse. Our results suggest that Gpx-1 plays an important regulatory role in the protection of neural cells in response to ischemia/reperfusion injury. |
---|---|
ISSN: | 0271-678X 1559-7016 |
DOI: | 10.1097/00004647-200301000-00002 |