Lifecycle closure, lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data
Oak gallwasps are cyclically parthenogenetic insects that induce a wide diversity of highly complex species- and generation-specific galls on oaks and other Fagaceae. Phylogenetic relationships within oak gallwasps remain to be established, while sexual and parthenogenetic generations of many specie...
Gespeichert in:
Veröffentlicht in: | Molecular phylogenetics and evolution 2003, Vol.26 (1), p.36-45 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Oak gallwasps are cyclically parthenogenetic insects that induce a wide diversity of highly complex species- and generation-specific galls on oaks and other Fagaceae. Phylogenetic relationships within oak gallwasps remain to be established, while sexual and parthenogenetic generations of many species remain unpaired. Previous work on oak gallwasps has revealed substantial intra-specific variation, particularly between regions known to represent discrete Pleistocene glacial refuges. Here we use statistical phylogenetic inference methods on sequence data for a fragment of the mitochondrial cytochrome
b gene to reconstruct the relationships among 62 oak gallwasp species. For 16 of these we also include 23 additional cytochrome
b haplotype sequences from different Pleistocene refuge areas to test the effect of intra-specific variation on inter-specific phylogeny reconstruction. The reconstructed phylogenies show good intra-generic resolution and identify several conserved clades, but fail to reconstruct either very recent or very ancient divergences. Nine of the 16 species represented by multiple haplotypes are not monophyletic. The apparent discordance between the recovered gene tree and the current taxonomic classification can be explained through: (a) collapsing of some species currently known only from either a sexual or a parthenogenetic generation into a single cyclically parthenogenetic entity; (b) sorting of ancestral polymorphism in diverging lineages, and (c) horizontal transfer of haplotypes, perhaps due to hybridization within glacial refuges. Our conclusions emphasise the need for careful intra-specific sampling when reconstructing phylogenies for radiations of closely related species and imply that for certain taxonomic groups full phylogenetic resolution (using molecular markers) may not be attainable. |
---|---|
ISSN: | 1055-7903 1095-9513 |
DOI: | 10.1016/S1055-7903(02)00329-9 |