Expression and localization of carbonic anhydrase and ATPases in the symbiotic tubeworm Riftia pachyptila

The symbiotic tubeworm Riftia pachyptila needs to fuel its chemoautotrophic symbiotic bacteria with inorganic carbon. CO(2) is transported from the surrounding water to the bacteriocytes located in the trophosome, through the branchial plume and the body fluids. Previous studies have demonstrated th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2003-01, Vol.206 (Pt 2), p.399-409
Hauptverfasser: De Cian, Marie-Cécile, Andersen, Ann C, Bailly, Xavier, Lallier, François H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The symbiotic tubeworm Riftia pachyptila needs to fuel its chemoautotrophic symbiotic bacteria with inorganic carbon. CO(2) is transported from the surrounding water to the bacteriocytes located in the trophosome, through the branchial plume and the body fluids. Previous studies have demonstrated the implication of carbonic anhydrase (CA) and proton pumps (ATPases) at various steps of CO(2) transport. The present study describes the expression pattern of cytosolic CA using an RNA probe and its histochemical and immunocytochemical localization in the trophosome and branchial plume of RIFTIA: Immunolocalization of V-H(+)ATPase and Na(+)K(+)-ATPase were also performed and related to CA localization. In the branchial plume, CA is expressed and localized in the most apical region of the branchial epithelium, close to the surrounding water. V-H(+)ATPase is mostly colocalized with CA and both enzymes probably allow CO(2) entry against the concentration gradient while regulating intracellular pH. Na(+)K(+)-ATPase is mostly restricted to the basal part of epithelial cells and probably participates in CO(2) transport to the body fluids. In the trophosome lobules, cytosolic CA is expressed and found in bacteriocytes and peritoneal cells. Hypotheses on the role of CA in bicarbonate and CO(2) interconversion to fuel the symbiotic bacteria are discussed.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.00074