Debaryomyces mycophilus sp. nov., a siderophore‐dependent yeast isolated from woodlice
Four strains of an ascogenous yeast were isolated from the guts of the woodlice species Armadillidium vulgare (Latreille). This yeast differed from all known yeasts by its inability to grow in culture without the presence of a metabolite produced by some common soil fungi such as Cladosporium clados...
Gespeichert in:
Veröffentlicht in: | FEMS yeast research 2002-08, Vol.2 (3), p.415-427 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Four strains of an ascogenous yeast were isolated from the guts of the woodlice species Armadillidium vulgare (Latreille). This yeast differed from all known yeasts by its inability to grow in culture without the presence of a metabolite produced by some common soil fungi such as Cladosporium cladosporioides, Aspergillus alliaceus, and Penicillium spp. Phylogenetic analysis based on 18S rDNA and 26S rDNA (domain D1/D2) sequences indicated that the yeast represents a new taxon in the genus Debaryomyces. The new species Debaryomyces mycophilus is thus proposed. It was, furthermore, shown that the fungal metabolite necessary for growth of D. mycophilus did not provide the yeast with carbon, nitrogen or vitamins. The active compound was partially purified and it was shown that it is a siderophore used by the yeast as a source of iron. The addition of ferrichrome or high concentrations of FeCl3 to growth media replaced the obligate dependence on a fungal metabolite. Symbiosis among fungi, based on the availability and utilization of iron, is an aspect of mycology that has not previously been recognized. The addition of chelated iron to isolation media could lead to the discovery of many unknown yeasts and fungi. |
---|---|
ISSN: | 1567-1356 1567-1364 |
DOI: | 10.1111/j.1567-1364.2002.tb00112.x |