Glucocorticoids in the nonobese diabetic (NOD) mouse: Basal serum levels, effect of endocrine manipulation and immobilization stress

The NOD mouse is a recognized model for studying immunologically mediated insulin-dependent diabetes mellitus (IDDM). In most colonies, the disease appears with a greater preponderance in females than in males and castration alters the expression of the disease. The prevalence of diabetes may also v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 1992, Vol.50 (14), p.1063-1069
Hauptverfasser: Fitzpatrick, Fenella, Christeff, Névena, Durant, Sylvie, Dardenne, Mireille, Nunez, Emmanuel A., Homo-Delarche, Françoise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The NOD mouse is a recognized model for studying immunologically mediated insulin-dependent diabetes mellitus (IDDM). In most colonies, the disease appears with a greater preponderance in females than in males and castration alters the expression of the disease. The prevalence of diabetes may also vary depending upon environmental factors such as stress. Therefore, we measured in the NOD mouse serum glucocorticoid concentrations in basal and stress conditions. We observed in NOD as well as in C57BL/6 mice, taken as controls, a circadian rhythm of corticosterone, with females having higher values than males. After a single restraint stress, female and male NOD mice exhibit a comparable response, whereas after repeated stress, males respond significantly less than females, suggesting an adaptation phenomenon. In contrast, there is no difference in the pattern of corticosterone response of C57BL/6 females and males to both types of stress, but females always respond better than males. Moreover, whatever the stress considered, NOD mice generally exhibit a higher corticosterone response than C57BL/6 mice. The sexual dimorphism in diabetes expression in NOD mice may be related to the levels of corticosterone, a hyperglycemic hormone, in both basal and stress conditions. However, the understanding of corticosteroid effects in this model of type I IDDM is rather complex given their well known anti-inflammatory and immunosuppressive effects in other models of autoimmune diseases.
ISSN:0024-3205
1879-0631
DOI:10.1016/0024-3205(92)90102-U