A potassium current activated by lemakalim and metabolic inhibition in rabbit mesenteric artery
K+ channels which are inhibited by intracellular ATP (ATPi) (KATP channels) are thought to be the physiological target site of the K+ channel opening drugs (2) and to underlie a variety of physiological phenomena including hypoxia induced vasodilation. However, electrophysiological evidence for ATPi...
Gespeichert in:
Veröffentlicht in: | Pflügers Archiv 1992, Vol.420 (1), p.118-120 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | K+ channels which are inhibited by intracellular ATP (ATPi) (KATP channels) are thought to be the physiological target site of the K+ channel opening drugs (2) and to underlie a variety of physiological phenomena including hypoxia induced vasodilation. However, electrophysiological evidence for ATPi-regulated K+ currents in smooth muscle is scarce. We, therefore, investigated the effects of one K+ channel opener, lemakalim, and metabolic inhibition on the membrane conductance of freshly dissociated rabbit mesenteric artery smooth muscle cells, using the perforated-patch whole cell recording technique. The cells were metabolically inhibited with 1 mM iodoacetic acid and 50 microM dinitrophenol. Both lemakalim (0.1-3 microM) and metabolic inhibition activated a time-independent and glyburide sensitive K+ current at physiological membrane potentials. The similarities between the lemakalim and metabolic inhibition activated currents suggest that a single class of channels underlies both currents. These results are the first whole-cell current recordings to demonstrate the activation of a smooth muscle membrane conductance by metabolic inhibition, lending support to the view that hypoxia induced vasodilation arises from the activation of KATP channels. |
---|---|
ISSN: | 0031-6768 1432-2013 |
DOI: | 10.1007/BF00378653 |