Histidine residues regulate the transition of photoexcited rhodopsin to its active conformation, metarhodopsin II
The biologically active photoproduct of rhodopsin, metarhodopsin II (M II), exists in a pH-sensitive equilibrium with its precursor, metarhodopsin I (M I). Increasing acidity favors M 11, with the midpoint of the pH titration curve at pH 6.4. To test the long-standing proposal that histidine protona...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 1992-03, Vol.8 (3), p.465-472 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The biologically active photoproduct of rhodopsin, metarhodopsin II (M II), exists in a pH-sensitive equilibrium with its precursor, metarhodopsin I (M I). Increasing acidity favors M 11, with the midpoint of the pH titration curve at pH 6.4. To test the long-standing proposal that histidine protonation regulates this conformational transition, we characterized mutant rhodopsins in which each of the 6 histidines was replaced by phenylalanine or cysteine. Only mutants substituted at the 3 conserved histidines showed abnormal M I–M II equilibria. Those in which His-211 was replaced by phenylalanine or cysteine formed little or no M 11 at either extreme of pH, whereas mutants substituted at His-65 or at His-152 showed enhanced sensitivity to protons. The simplest interpretation of these results is that His-211 is the site where protonation strongly stabilizes the M I I conformation and that His-65 and His-152 are sites where protonation modestly destabilizes the M 11 conformation. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/0896-6273(92)90274-H |