Simple exponential regression model to describe the relation between minute ventilation and oxygen uptake during incremental exercise

The physiological significance of an exponential regression model between minute ventilation (VE) and oxygen uptake (VO2) during incremental exercise was examined. Thirty-eight subjects, including 12 patients with chronic heart failure, participated in cardiopulmonary exercise testing on a bicycle e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya journal of medical science 2002-11, Vol.65 (3-4), p.95-102
Hauptverfasser: Baba, Reizo, Mori, Emiko, Tauchi, Nobuo, Nagashima, Masami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The physiological significance of an exponential regression model between minute ventilation (VE) and oxygen uptake (VO2) during incremental exercise was examined. Thirty-eight subjects, including 12 patients with chronic heart failure, participated in cardiopulmonary exercise testing on a bicycle ergometer. The equation VE = a e(bVO2), where a and b are parameters, was used to describe the relation between VE and VO2 during incremental exercise. Arterialized blood gas analysis was measured before and during exercise. The correlation coefficient of the regression model was high (r = 0.97 +/- 0.02). Parameter a negatively correlated with the arterial partial pressure of carbon dioxide during exercise (r = -0.44, p < 0.01), and positively correlated with peak VO2 (r = 0.47, p < 0.01). Parameter b negatively correlated with peak VO2 (r = -0.86, p < 0.01) and positively correlated with the dead space to tidal volume ratio (r = 0.68, p < 0.01). The regression model, as well as parameters a and b, is physiologically useful in expressing metabolic response to exercise. This model, a specific solution to the differential equation dVE/dVO2 = bVE, implies that the more a subject breathes, the greater is the increment in ventilation needed to meet a further increment of metabolic demand.
ISSN:0027-7622