2',3'-O-(2,4,6-trinitrophenyl)-8-azido-AMP and -ATP photolabel Lys-492 at the active site of sarcoplasmic reticulum Ca(2+)-ATPase

2',3'-O-(2,4,6-trinitrophenyl)-8-azido (TNP-8N3)-AMP, -ADP, and -ATP bind tightly to the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum and become covalently attached on irradiation at alkaline pH, concomitant with inactivation of ATPase activity (Seebregts, C. J., and McIntosh, D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1992-03, Vol.267 (8), p.5301-5309
Hauptverfasser: McIntosh, D B, Woolley, D G, Berman, M C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:2',3'-O-(2,4,6-trinitrophenyl)-8-azido (TNP-8N3)-AMP, -ADP, and -ATP bind tightly to the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum and become covalently attached on irradiation at alkaline pH, concomitant with inactivation of ATPase activity (Seebregts, C. J., and McIntosh, D. B. (1989) J. Biol. Chem. 264, 2043-2052). The ATPase is derivatized to the extent of 2-3 nmol/mg protein (i.e. approximately 1/2 maximum phosphoenzyme levels) per irradiation period at equimolar concentrations of ATPase and nucleotide. Stability studies of the adduct formed at alkaline pH revealed that the linkage is labile, particularly if the protein is denatured by brief heat (60 degrees C) treatment (t1/2 = 4-8 h at 40 degrees C). Thermolysin digestion of derivatized vesicles resulted in the release of the majority of the TNP chromaphore as an unstable TNP-peptide adduct (t1/2 = 9 h at 25 degrees C) with the sequence FSRDR*SMS, where the missing residue is Lys-492 and is presumably that which is derivatized. The same peptide adduct, and in similar amounts, was isolated from the ATPase derivatized with either TNP-8N3-AMP or -ATP. Several lines of evidence, including the finding that ATP- and not acetyl phosphate- or Pi-dependent phosphorylation is blocked by derivatization, suggest that the lysyl residue is at the catalytic nucleotide binding site, but is not directly involved in phosphoryl transfer. Lys-492 and Phe-487, as well as neighboring Arg-476 and Lys-515 (labeled with fluorescein 5'-isothiocyanate), have all been highly conserved and probably contribute to a subdomain binding the purine and/or proximal phosphoryl groups of ATP.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)42766-4