Peptide secondary structure induced by a micellar phospholipidic interface: proton NMR conformational study of a lipopeptide

The conformational change of the model peptide Ac-K-G-R-G-D-G-amide induced by a phospholipidic interface was investigated by proton nuclear magnetic resonance (1H NMR). In aqueous solution, the free peptide is highly flexible and disordered, even in the presence of deuterated dodecyl-phosphocholine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1992-03, Vol.31 (9), p.2576-2582
Hauptverfasser: Macquaire, Francois, Baleux, Francoise, Giaccobi, Emmanuelle, Huynh Dinh Tam, Neumann, Jean Michel, Sanson, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conformational change of the model peptide Ac-K-G-R-G-D-G-amide induced by a phospholipidic interface was investigated by proton nuclear magnetic resonance (1H NMR). In aqueous solution, the free peptide is highly flexible and disordered, even in the presence of deuterated dodecyl-phosphocholine (DPC-d38) micelles which mimic a membrane interface. The lipopeptide, obtained by grafting a lipid anchor [2,3-dipalmitoyl-D-(+)-glyceric acid] to the lysine side chain of the peptide, was studied by standard 2D 1H NMR spectroscopy combined with distance geometry and simulated annealing calculations. When anchored to a micelle interface, the peptide acquires a definite turn (II/I') conformation. We were also able to describe precisely the conformation of the diacylglyceric fragment of the lipopeptide in a lipid environment and to establish the average orientation of the peptide segment with respect to the micelle surface.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00124a018