Automated segmentation of multispectral brain MR images

This work presents a robust and comprehensive approach for the in vivo automated segmentation and quantitative tissue volume measurement of normal brain composition from multispectral magnetic resonance imaging (MRI) data. Statistical pattern recognition methods based on a finite mixture model are u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2002-12, Vol.122 (1), p.13-23
Hauptverfasser: Andersen, Anders H., Zhang, Zhiming, Avison, Malcolm J., Gash, Don M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents a robust and comprehensive approach for the in vivo automated segmentation and quantitative tissue volume measurement of normal brain composition from multispectral magnetic resonance imaging (MRI) data. Statistical pattern recognition methods based on a finite mixture model are used to partition the intracranial volume into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) spaces. A masking algorithm initially extracts the brain volume from surrounding extrameningeal tissue. Radio frequency (RF) field inhomogeneity effects in the images are then removed using a recursive method that adapts to the intrinsic local tissue contrast. Our technique supports heterogeneous data with multispectral MR images of different contrast and intensity weighting acquired at varying spatial resolution and orientation. The proposed image segmentation methods have been tested using multispectral T1-, proton density-, and T2-weighted MRI data from young and aged non-human primates as well as from human subjects.
ISSN:0165-0270
1872-678X
DOI:10.1016/S0165-0270(02)00273-X