Molecular cloning, chromosomal localization, and bacterial expression of a murine macrophage metalloelastase

Murine macrophages have previously been shown to secrete a zinc-dependent proteinase that can degrade elastin. In this report, we identify murine macrophage elastase (MME) cDNA and show that it is a distinct member of the metalloproteinase gene family. Small amounts of MME were purified to homogenei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1992-03, Vol.267 (7), p.4664-4671
Hauptverfasser: SHAPIRO, S. D, GRIFFIN, G. L, GILBERT, D. J, JENKINS, N. A, COPELAND, N. G, WELGUS, H. G, SENIOR, R. M, LEY, T. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Murine macrophages have previously been shown to secrete a zinc-dependent proteinase that can degrade elastin. In this report, we identify murine macrophage elastase (MME) cDNA and show that it is a distinct member of the metalloproteinase gene family. Small amounts of MME were purified to homogeneity, and N-terminal amino acid sequence was obtained. This sequence was used to obtain a partial cDNA clone by the polymerase chain reaction; a cDNA library derived from a mouse macrophage-like cell line (P388D1) was screened with this probe. A full-length MME cDNA spanning approximately 1.8 kilobases contained an open reading frame of 1386 base pairs; the predicted molecular mass of the MME proenzyme is 53 kDa. The gene encoding MME is represented only once in the mouse genome and is located on chromosome 9. Despite a size that is similar to other metalloproteinases, MME is distinct, sharing only 33-48% amino acid homology with other metalloproteinases. In contrast to other metalloenzymes, MME appears to be rapidly processed to an active truncated form (N-terminal and C-terminal cleavage). We expressed recombinant MME in Escherichia coli and demonstrated that it has significant elastolytic activity that is specifically inhibited by the tissue inhibitor of metalloproteinases. MME is therefore a true metalloproteinase that may be involved in tissue injury and remodeling.
ISSN:0021-9258
1083-351X
DOI:10.1016/s0021-9258(18)42885-2