Comprehensive Analyses of a Unique HIV-1-Infected Nonprogressor Reveal a Complex Association of Immunobiological Mechanisms in the Context of Replication-Incompetent Infection

We recently demonstrated that a unique HIV-1-infected nonprogressor was infected with a nonevolving replication-incompetent HIV-1 strain, showing a total absence of viral evolution in vivo. Potent immune responses against HIV-1 were observed in his PBMC, despite an apparent lack of viral replication...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virology (New York, N.Y.) N.Y.), 2002-12, Vol.304 (2), p.246-264
Hauptverfasser: Wang, Bin, Dyer, Wayne B., Zaunders, John J., Mikhail, Meriet, Sullivan, John S., Williams, Lisa, Haddad, Da'ed N., Harris, Graeme, Holt, John A.G., Cooper, David A., Miranda-Saksena, Monica, Boadle, Ross, Kelleher, Anthony D., Saksena, Nitin K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recently demonstrated that a unique HIV-1-infected nonprogressor was infected with a nonevolving replication-incompetent HIV-1 strain, showing a total absence of viral evolution in vivo. Potent immune responses against HIV-1 were observed in his PBMC, despite an apparent lack of viral replication for at least 8 years. His PBMC resisted superinfection with CCR5, CXCR4, and dual-tropic HIV-1 strains, although highly purified CD4+ T cells supported infection, but without any visible cytopathic effect. Potent noncytolytic CD8+ T cell antiviral activity was shown to protect his PBMC from productive infection. This activity was not mediated by several known chemokines or IFN-γ, which were produced at high levels after PHA activation of his CD8+ T cells, indicating the action of other CAF-like CD8 factors. This antiviral activity was a memory response, induced by HIV-specific stimulation to similar levels observed by PHA stimulation, but absent in ex vivo resting T cells. Immunological mechanisms associated with this antiviral suppressive activity included vigorous Gag-specific helper T cell proliferative responses and high-level IFN-γ release by both CD4 and CD8 T cells. These responses were broadly directed against multiple Gag epitopes, both previously reported and some novel epitopes. Strong HIV-specific helper T cell function was also associated with strong neutralizing antibodies. Understanding how to induce these protective immune responses in other individuals could provide a major step forward in the design of effective immunotherapies or vaccines against HIV infection.
ISSN:0042-6822
1096-0341
DOI:10.1006/viro.2002.1706