Application of an Absorption-Based Surface Plasmon Resonance Principle to the Development of SPR Ammonium Ion and Enzyme Sensors

Two new types of surface plasmon resonance (SPR) sensors that can determine the concentration of ammonium cations and urea were realized based on the previously reported theory of the absorption-based SPR measurement method. The change of the dielectric constant caused by the change of the light abs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2002-12, Vol.74 (23), p.6106-6110
Hauptverfasser: Fujii, Eiji, Koike, Takashi, Nakamura, Kaori, Sasaki, Shin-ichi, Kurihara, Kazuyoshi, Citterio, Daniel, Iwasaki, Yuzuru, Niwa, Osamu, Suzuki, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two new types of surface plasmon resonance (SPR) sensors that can determine the concentration of ammonium cations and urea were realized based on the previously reported theory of the absorption-based SPR measurement method. The change of the dielectric constant caused by the change of the light absorption characteristics of dyes incorporated in a sensing membrane phase is utilized in these SPR sensors. The determination of ions using the SPR sensor was realized by detecting the SPR signals of the minimum reflectance related to the change of absorption spectra of the dye in the ion optode membrane consisting of an ammonium-selective ionophore (TD19C6) and a lipophilic cationic dye (KD-M11) that shows absorption spectral changes due to protonation and deprotonation. A SPR enzyme sensor that can determine the concentration of urea was prepared by the combination of this ion optode membrane and an enzyme membrane based on urease. With the newly developed SPR sensors, the intensity changes of the reflectance at the fixed SPR resonance angle are monitored, which is different from conventional SPR sensors where usually the change of the SPR resonance angles is detected. In a continuous-flow experiment using the SPR ion sensor for NH4 + ion determination, a dynamic measurement range from 10-5 to 10-2 M was achieved. In the case of the enzyme-based SPR urea sensor, a dynamic range from 10-4 to 10-1 M was observed in a stopped-flow batch arrangement. It is expected that this sensing technique can be applied for the SPR-based detection of a wide range of low molecular weight analytes.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0258655