Derivatized dextrans mimic heparin as stabilizers, potentiators, and protectors of acidic or basic FGF

Acidic and basic fibroblast growth factors (aFGF and bFGF) belong to a family of structurally related polypeptides characterized by a high affinity for heparin. a and bFGF display mitogenic activity for many cell types. Biological activity is strongly potentiated by heparin which stabilizes their mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 1992-01, Vol.150 (1), p.194-203
Hauptverfasser: Tardieu, Michele, Gamby, Chantal, Avramoglou, Thierry, Jozefonvicz, Jacqueline, Barritault, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acidic and basic fibroblast growth factors (aFGF and bFGF) belong to a family of structurally related polypeptides characterized by a high affinity for heparin. a and bFGF display mitogenic activity for many cell types. Biological activity is strongly potentiated by heparin which stabilizes their molecular conformation by preventing physicochemical or enzymatic degradation. In our previous study we have shown that a water‐soluble derivatized dextran named DDE, containing 82.2% methyl carboxylic acid groups, 6.1% benzyl‐amide, and 5.6% sulfonate with a specific anticoagulant activity equivalent to heparin of 0.5 IU/mg could potentiate the mitogenic activity of aFGF on CCL39 cells. Optimal concentrations for maximal potentiation of 400 μg/ml and 20 μg/ml were obtained respectively for DDE and heparin. In the present report, we have uncovered the fact that several carboxymethyl benzylamide sulfonate dextrans differing in degree and positioning of the substituent groups can mimic heparin in regard to the protection, stabilization, and potentiating effects with aFGF or bFGF. Our data establishes that the dextran derivatives studied can act as potentiating agents for FGFs. Native dextran (DDA) had no effect. Dextran derivatives can also protect aFGF and bFGF from heat as well as from pH denaturation, and against trypsic and chymotrypsic degradation. The dextran derivative DDI (82% methylcarboxylic acid, 23% benzylamide, 13% sulfonate) was studied in greater detail and exhibited a greater protection for bFGF and a lesser protecting effect for aFGF than heparin. Derivatized dextrans which have very weak anticoagulant activity are of great interest as alternatives to heparin for use as stabilizers, potentiators, protectants, and slow‐release matrices for FGFs in pharmaceutical formulations.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.1041500126