Characterization of an ultraviolet and a vacuum-ultraviolet irradiance meter with synchrotron radiation

We have constructed and characterized a simple probe that is suitable for accurate measurements of irradiance in the UV to the vacuum UV spectral range. The irradiance meter consists of a PtSi detector located behind a 5-mm-diameter aperture. The probe was characterized at various wavelengths rangin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2002-12, Vol.41 (34), p.7173-7178
Hauptverfasser: Shaw, Ping-Shine, Gupta, Rajeev, Lykke, Keith R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have constructed and characterized a simple probe that is suitable for accurate measurements of irradiance in the UV to the vacuum UV spectral range. The irradiance meter consists of a PtSi detector located behind a 5-mm-diameter aperture. The probe was characterized at various wavelengths ranging from 130 to 320 mm by use of continuously tunable synchrotron radiation from the Synchrotron Ultra-violet Radiation Facility III. We determined the irradiance responsivity by scanning a small monochromatic beam over the active area of the irradiance meter and measuring its response on a grid with regular spacing. The angular response was also determined and shown to be suitable for applications such as photolithography. In addition, we studied the radiation damage using a 157-nm excimer laser and found that the irradiance meter can endure more than 100 J/cm2 of 157-nm radiation before a noticeable change occurs in its responsivity. Many industrial applications such as UV curing, photolithography, or semiconductor chip fabrication that require accurate measurement of the irradiance would benefit from having such a stable, accurate LTV irradiance meter.
ISSN:1559-128X
0003-6935
1539-4522
DOI:10.1364/AO.41.007173