Linear Spatial Integration for Single-Trial Detection in Encephalography

Conventionalanalysis of electroencephalography (EEG) and magnetoencephalography (MEG) often relies on averaging over multiple trials to extract statistically relevant differences between two or more experimental conditions. In this article we demonstrate single-trial detection by linearly integratin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2002-09, Vol.17 (1), p.223-230
Hauptverfasser: Parra, Lucas, Alvino, Chris, Tang, Akaysha, Pearlmutter, Barak, Yeung, Nick, Osman, Allen, Sajda, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conventionalanalysis of electroencephalography (EEG) and magnetoencephalography (MEG) often relies on averaging over multiple trials to extract statistically relevant differences between two or more experimental conditions. In this article we demonstrate single-trial detection by linearly integrating information over multiple spatially distributed sensors within a predefined time window. We report an average, single-trial discrimination performance of A z ≈ 0.80 and fraction correct between 0.70 and 0.80, across three distinct encephalographic data sets. We restrict our approach to linear integration, as it allows the computation of a spatial distribution of the discriminating component activity. In the present set of experiments the resulting component activity distributions are shown to correspond to the functional neuroanatomy consistent with the task (e.g., contralateral sensory–motor cortex and anterior cingulate). Our work demonstrates how a purely data-driven method for learning an optimal spatial weighting of encephalographic activity can be validated against the functional neuroanatomy.
ISSN:1053-8119
1095-9572
DOI:10.1006/nimg.2002.1212