Sumoylation of Mdm2 by Protein Inhibitor of Activated STAT (PIAS) and RanBP2 Enzymes

Mdm2, a ubiquitin ligase that acts on p53, is regulated by sumoylation. In the current study, we identify the enzymes responsible for the sumoylation of Mdm2. When mammalian cells are co-transfected with cDNAs encoding Mdm2 and PIAS1 or PIASxβ (protein inhibitor of activatedSTAT) as sumoylation enzy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-12, Vol.277 (51), p.50131-50136
Hauptverfasser: Miyauchi, Yasuhiro, Yogosawa, Satomi, Honda, Reiko, Nishida, Tamotsu, Yasuda, Hideyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mdm2, a ubiquitin ligase that acts on p53, is regulated by sumoylation. In the current study, we identify the enzymes responsible for the sumoylation of Mdm2. When mammalian cells are co-transfected with cDNAs encoding Mdm2 and PIAS1 or PIASxβ (protein inhibitor of activatedSTAT) as sumoylation enzymes, Mdm2 is highly sumoylated. Mdm2 is also sumoylated in an in vitro system containing PIASxβ, PIAS1, and RanBP2. When several lysine residues of Mdm2 were sequentially mutated to arginine, the K182R mutant was not sumoylated in intact cells; however, in the in vitro system this mutant was sumoylated by PIAS1, PIASxβ, and RanBP2 as efficiently as the wild-type Mdm2 protein. Lysine residues 182 and 185 map within the nuclear localization signal of Mdm2. A K185R mutant of Mdm2 is sumoylated in intact cells, whereas a K182R protein is not. Only a Mdm2 protein bearing the K182R mutation is localized exclusively in the cytoplasm. Because RanBP2 is a nuclear pore protein and PIAS proteins are localized within the nucleus, our data suggest that Mdm2 is sumoylated during nuclear translocation by RanBP2 and then further sumoylated once in the nucleus by PIASxβ and PIAS1.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M208319200