Transport of Cholesterol into Mitochondria Is Rate-limiting for Bile Acid Synthesis via the Alternative Pathway in Primary Rat Hepatocytes

Bile acid synthesis occurs mainly via two pathways: the “classic” pathway, initiated by microsomal cholesterol 7α-hydroxylase (CYP7A1), and an “alternative” (acidic) pathway, initiated by sterol 27-hydroxylase (CYP27). CYP27 is located in the inner mitochondrial membrane, where cholesterol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-12, Vol.277 (50), p.48158-48164
Hauptverfasser: Pandak, William M, Ren, Shunlin, Marques, Dalila, Hall, Elizabeth, Redford, Kaye, Mallonee, Darrell, Bohdan, Patricia, Heuman, Douglas, Gil, Gregorio, Hylemon, Phillip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bile acid synthesis occurs mainly via two pathways: the “classic” pathway, initiated by microsomal cholesterol 7α-hydroxylase (CYP7A1), and an “alternative” (acidic) pathway, initiated by sterol 27-hydroxylase (CYP27). CYP27 is located in the inner mitochondrial membrane, where cholesterol content is very low. We hypothesized that cholesterol transport into mitochondria may be rate-limiting for bile acid synthesis via the “alternative” pathway. Overexpression of the gene encoding st eroidogenic a cute r egulatory (StAR) protein, a known mitochondrial cholesterol transport protein, led to a 5-fold increase in bile acid synthesis. An increase in StAR protein coincided with an increase in bile acid synthesis. CYP27 overexpression increased bile acid synthesis by
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M205244200