Distribution of interstitial telomere-like repeats and their adjacent sequences in a dioecious plant, Silene latifolia

The dioecious plant Silene latifolia has large, heteromorphic X and Y sex chromosomes that are thought to be derived from rearrangements of autosomes. To reveal the origin of the sex chromosomes in S. latifolia, we isolated and characterized telomere-homologous sequences from intra-chromosomal regio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chromosoma 2002-12, Vol.111 (5), p.313-320
Hauptverfasser: Uchida, Wakana, Matsunaga, Sachihiro, Sugiyama, Ryuji, Shibata, Fukashi, Kazama, Yusuke, Miyazawa, Yutaka, Hizume, Masahiro, Kawano, Shigeyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dioecious plant Silene latifolia has large, heteromorphic X and Y sex chromosomes that are thought to be derived from rearrangements of autosomes. To reveal the origin of the sex chromosomes in S. latifolia, we isolated and characterized telomere-homologous sequences from intra-chromosomal regions (interstitial telomere-like repeats; ITRs) and ITR-adjacent sequences (IASs). Nine genomic DNA fragments with degenerate 84- to 175-bp ITRs were isolated from a genomic library and total genome of male plants. Comparing the nucleotide sequences, the IASs of the nine ITRs were classified into seven elements (IAS-a, IAS-b, IAS-c, IAS-d, IAS-e, IAS-f, and IAS-g) by sequence similarity. The ITRs were grouped into two classes (class-I and -II ITRs) according to the classification of IASs. The class-I ITRs were sub-grouped into three subclasses (subclasses-IA, -IB, and -IC ITRs) based on the arrangement of IAS elements. By contrast, the class-II ITR was located between two different IASs (IAS-f and IAS-g). Genomic Southern analyses showed that both the male and female genomes contained six (IAS-f) to 153 (IAS-d) copies of each IAS per haploid genome. Fluorescence in situ hybridization analyses showed that one IAS element, IAS-d, was distributed in the interstitial and proximal regions of the sex chromosomes of S. latifolia. The distribution of IAS-d is important evidence for past telomere-mediated chromosome rearrangements during the evolution of the sex chromosomes of S. latifolia.
ISSN:0009-5915
1432-0886
DOI:10.1007/s00412-002-0213-5