Non-framework cation migration and irreversible pressure-induced hydration in a zeolite
Zeolites crystallize in a variety of three-dimensional structures in which oxygen atoms are shared between tetrahedra containing silicon and/or aluminium, thus yielding negatively charged tetrahedral frameworks that enclose cavities and pores of molecular dimensions occupied by charge-balancing meta...
Gespeichert in:
Veröffentlicht in: | Nature 2002-12, Vol.420 (6915), p.485-489 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zeolites crystallize in a variety of three-dimensional structures in which oxygen atoms are shared between tetrahedra containing silicon and/or aluminium, thus yielding negatively charged tetrahedral frameworks that enclose cavities and pores of molecular dimensions occupied by charge-balancing metal cations and water molecules. Cation migration in the pores and changes in water content associated with concomitant relaxation of the framework have been observed in numerous variable-temperature studies, whereas the effects of hydrostatic pressure on the structure and properties of zeolites are less well explored. The zeolite sodium aluminosilicate natrolite was recently shown to undergo a volume expansion at pressures above 1.2 GPa as a result of reversible pressure-induced hydration; in contrast, a synthetic analogue, potassium gallosilicate natrolite, exhibited irreversible pressure-induced hydration with retention of the high-pressure phase at ambient conditions. Here we report the structure of the high-pressure recovered phase and contrast it with the high-pressure phase of the sodium aluminosilicate natrolite. Our findings show that the irreversible hydration behaviour is associated with a pronounced rearrangement of the non-framework metal ions, thus emphasizing that they can clearly have an important role in mediating the overall properties of zeolites. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature01265 |