Synaptic depression increases the selectivity of a neuron to its preferred pattern and binarizes the neural code

The preferred pattern of a neuron is defined here by the set of features detected by its excitatory inputs. It is shown that the Leaky integrate-and-fire (LIF) model of a neuron has a poor selectivity to its preferred pattern. Its response is determined by the total current injected by input spike t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioSystems 2002-10, Vol.67 (1), p.17-25
1. Verfasser: Bugmann, Guido
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The preferred pattern of a neuron is defined here by the set of features detected by its excitatory inputs. It is shown that the Leaky integrate-and-fire (LIF) model of a neuron has a poor selectivity to its preferred pattern. Its response is determined by the total current injected by input spike trains. Thus, a few inputs with a high activity (an incomplete pattern) can elicit the same response as many inputs (a complete pattern) with a weak activity. A theoretical model of depressing synapse with linear recovery is proposed which eliminates this problem. Using this model, the time-averaged current injected in the soma by a spike train becomes independent on its frequency. The neural code thus becomes binary, and the response strength of the target neuron depends only on the number of active inputs. Simulations show that a biological model of strong synaptic depression has effects similar to those of the ideal linear model. The best selectivity is obtained with long somatic decay time constants (>50 ms) and with depression recovery time constants larger or equal to the somatic decay time constant. Thus, by eliminating information carried in the input firing rate, a neuron can improve its pattern recognition performance.
ISSN:0303-2647
1872-8324
DOI:10.1016/S0303-2647(02)00059-X