The zebrafish mutant gene chardonnay (cdy) encodes divalent metal transporter 1 (DMT1)

Iron is an essential nutrient required for the function of all cells, most notably for the production of hemoglobin in red blood cells. Defects in the mechanisms of iron absorption, storage, or utilization can lead to disorders of iron-limited erythropoiesis or iron overload. In an effort to further...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood 2002-12, Vol.100 (13), p.4655-4659
Hauptverfasser: Donovan, Adriana, Brownlie, Alison, Dorschner, Michael O., Zhou, Yi, Pratt, Stephen J., Paw, Barry H., Phillips, Ruth B., Thisse, Christine, Thisse, Bernard, Zon, Leonard I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iron is an essential nutrient required for the function of all cells, most notably for the production of hemoglobin in red blood cells. Defects in the mechanisms of iron absorption, storage, or utilization can lead to disorders of iron-limited erythropoiesis or iron overload. In an effort to further understand these processes, we have used the zebrafish as a genetic system to study vertebrate iron metabolism. Here we characterized the phenotype ofchardonnay (cdy), a zebrafish mutant with hypochromic, microcytic anemia, and positioned the mutant gene on linkage group 11. The cdy gene was isolated by a functional genomics approach in which we used a combination of expression studies, sequence analyses, and radiation hybrid panel mapping. We identified erythroid-specific genes using a whole embryo mRNA in situ hybridization screen and placed these genes on the zebrafish genomic map. One of these genes encoded the iron transporter divalent metal transporter 1 (DMT1) and colocalized with the cdy gene. We identified a nonsense mutation in the cdyallele and demonstrated that, whereas wild-type zebrafish DMT1 protein can transport iron, the truncated protein expressed in cdymutants is not functional. Our studies further demonstrate the conservation of iron metabolism in vertebrates and suggest the existence of an alternative pathway of intestinal and red blood cell iron uptake.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2002-04-1169