Statistical Learning of New Visual Feature Combinations by Infants

The ability of humans to recognize a nearly unlimited number of unique visual objects must be based on a robust and efficient learning mechanism that extracts complex visual features from the environment. To determine whether statistically optimal representations of scenes are formed during early de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-11, Vol.99 (24), p.15822-15826
Hauptverfasser: Fiser, József, Aslin, Richard N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability of humans to recognize a nearly unlimited number of unique visual objects must be based on a robust and efficient learning mechanism that extracts complex visual features from the environment. To determine whether statistically optimal representations of scenes are formed during early development, we used a habituation paradigm with 9-month-old infants and found that, by mere observation of multielement scenes, they become sensitive to the underlying statistical structure of those scenes. After exposure to a large number of scenes, infants paid more attention not only to element pairs that cooccurred more often as embedded elements in the scenes than other pairs, but also to pairs that had higher predictability (conditional probability) between the elements of the pair. These findings suggest that, similar to lower-level visual representations, infants learn higher-order visual features based on the statistical coherence of elements within the scenes, thereby allowing them to develop an efficient representation for further associative learning.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.232472899