Characterization of gap junctions between cultured leptomeningeal cells
Leptomeningeal cells in intact meninges or dissociated and cultured for 2 h to several weeks were dye-coupled (Lucifer yellow), and voltage-clamped pairs of freshly dissociated leptomeningeal cells were well coupled electrically. Unitary conductances of junctional channels were predominantly 40–90 p...
Gespeichert in:
Veröffentlicht in: | Brain research 1991-12, Vol.568 (1), p.1-14 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Leptomeningeal cells in intact meninges or dissociated and cultured for 2 h to several weeks were dye-coupled (Lucifer yellow), and voltage-clamped pairs of freshly dissociated leptomeningeal cells were well coupled electrically. Unitary conductances of junctional channels were predominantly 40–90 pS. Junctional conductance was reversibly reduced by 2 mM halothane, 1 mM heptanol and 100% CO
2 and was increased by 1 mM 8 Br-cAMP. Two gap junction proteins, connexin 26 and connexin 43, were identified between leptomeningeal cells using immunocytochemical methods; Northern blot analyses of RNA isolated from cultured leptomeningeal cells showed specific hybridization to cDNAs encoding connexins 26 and 43, but not to a cDNA encoding connexin 32. These studies demonstrate co-expression of two connexins in a single cell type in the nervous system; biophysical properties do not differ significantly from those of astrocytes and cardiac myocytes, which express only connexin 43. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/0006-8993(91)91373-9 |