The dynamics of cell cycle regulation

Major events of the cell cycle—DNA synthesis, mitosis and cell division—are regulated by a complex network of protein interactions that control the activities of cyclin‐dependent kinases. The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioEssays 2002-12, Vol.24 (12), p.1095-1109
Hauptverfasser: Tyson, John J., Csikasz-Nagy, Attila, Novak, Bela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Major events of the cell cycle—DNA synthesis, mitosis and cell division—are regulated by a complex network of protein interactions that control the activities of cyclin‐dependent kinases. The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. Computer simulations are necessary for detailed quantitative comparisons between theory and experiment, but they give little insight into the qualitative dynamics of the control system and how molecular interactions determine the fundamental physiological properties of cell replication. To that end, bifurcation diagrams are a useful analytical tool, providing new views of the dynamical organization of the cell cycle, the role of checkpoints in assuring the integrity of the genome, and the abnormal regulation of cell cycle events in mutants. These claims are demonstrated by an analysis of cell cycle regulation in fission yeast. BioEssays 24:1095–1109, 2002. © 2002 Wiley‐Periodicals, Inc.
ISSN:0265-9247
1521-1878
DOI:10.1002/bies.10191