Structure-Based Design of Selective Agonists for a Rickets-Associated Mutant of the Vitamin D Receptor

The nuclear and steroid hormone receptors function as ligand-dependent transcriptional regulators of diverse sets of genes associated with development and homeostasis. Mutations to the vitamin D receptor (VDR), a member of the nuclear and steroid hormone receptor family, have been linked to human vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2002-11, Vol.124 (46), p.13795-13805
Hauptverfasser: Swann, Steve L, Bergh, Joel, Farach-Carson, Mary C, Ocasio, Cory A, Koh, John T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nuclear and steroid hormone receptors function as ligand-dependent transcriptional regulators of diverse sets of genes associated with development and homeostasis. Mutations to the vitamin D receptor (VDR), a member of the nuclear and steroid hormone receptor family, have been linked to human vitamin D-resistant rickets (hVDRR) and result in high serum 1,25(OH)2D3 concentrations and severe bone underdevelopment. Several hVDRR-associated mutants have been localized to the ligand binding domain of VDR and cause a reduction in or loss of ligand binding and ligand-dependent transactivation function. The missense mutation Arg274 → Leu causes a >1000-fold reduction in 1,25(OH)2D3 responsiveness and is, therefore, no longer regulated by physiological concentrations of the hormone. In this study, computer-aided molecular design was used to generate a focused library of nonsteroidal analogues of the VDR agonist LG190155 that were uniquely designed to complement the Arg274 → Leu associated with hVDRR. Half of the designed analogues exhibit substantial activity in the hVDRR-associated mutant, whereas none of the structurally similar control compounds exhibited significant activity. The seven most active designed analogues were more than 16 to 526 times more potent than 1,25(OH)2D3 in the mutant receptor (EC50 = 3.3−121 nM). Significantly, the analogues are selective for the nuclear VDR and did not stimulate cellular calcium influx, which is associated with activation of the membrane-associated vitamin D receptor.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0268377