New IUPAC (International Union of Pure and Applied Chemistry) recommendations on the measurement of pH - background and essentials
The IUPAC Recommendations on pH (1985) have serious metrological deficiencies (recommendation of two pH scales and of several pH definitions and procedures to measure pH). Background and essential features of new recommendations, which replace the 1985 document, are reported in this paper. The new d...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2002-11, Vol.374 (5), p.772-777 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The IUPAC Recommendations on pH (1985) have serious metrological deficiencies (recommendation of two pH scales and of several pH definitions and procedures to measure pH). Background and essential features of new recommendations, which replace the 1985 document, are reported in this paper. The new document is strictly based on metrological principles. pH is defined (notionally) by the negative logarithm of the hydrogen ion activity according to Sørensen and Linderstrøm-Lang (1924), that is pH=-lg a(H). Because pH is a single ion quantity it is immeasurable and is therefore experimentally verified, with stated uncertainties, by pH(PS) values of primary standard buffer solutions. The assignment of pH(PS) is carried out in a Harned cell (without transference), which is defined as a primary method of measurement, and involves the Bates-Guggenheim convention. pH(PS) is thus a conventional quantity. Consideration of the uncertainty of the Bates-Guggenhein convention, however, permits its incorporation into the internationally accepted SI system of measurement. Comparison of the pH of secondary buffer solutions with pH(PS) values in recommended cells with transference yields secondary standards, whose pH(SS) can be traced back to pH(PS) and consequently to the definition of pH. The traceability chain is continued "downwards" by practical cells with transference containing glass electrodes for the measurement of pH(X) values of unknown solutions, for which three calibration procedures are recommended. The measurement of pH is thus represented by the traceability chain pH(X)-->pH(SS)-->pH(PS)-->pH as defined, each step having stated uncertainties. This hierarchical system of measurement excludes any pH 'scale'. Tabulated pH(PS) values are given as examples, and it is recommended that actual pH(PS) and pH(SS) be taken from certificates, which are to accompany each lot of certified reference material (CRM). Target uncertainties and examples of their calculation, a sign convention for pH cells and conventions for presenting cell schemes are given in the new document. |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-002-1523-4 |