Viscoelasticity in the diffuse electric double layer
The electroacoustical impedance of the quartz crystal microbalance (QCM) in contact with aqueous electrolyte solutions was measured using the transfer function method in a flow injection system . Measurements of both components of the impedance of the QCM, the resistance R and the inductive reactanc...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2002-10, Vol.127 (10), p.1347-1352 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electroacoustical impedance of the quartz crystal microbalance (QCM) in contact with aqueous electrolyte solutions was measured using the transfer function method in a flow injection system . Measurements of both components of the impedance of the QCM, the resistance R and the inductive reactance XL, have been performed for modified and bare gold and silver surfaces and for different concentrations of several aqueous electrolyte solutions. For the experimental concentration range of 0-50 mM, unexpectedly the QCM impedance does not follow the Kanazawa equation, as is usual for bulk newtonian liquids. This behavior indicates the presence of a nanometric sized viscoelastic layer between the piezoelectric crystal and the bulk electrolyte solution. This layer can only be identified as the Gouy-Chapman diffuse double layer (DDL). Its elasticity and viscosity have been estimated by the measurement of R and XL. The viscoelasticity of the DDL appears to be independent of the chemical nature of the surface and of the solution viscosity but strongly dependent on the surface charge, the bulk electrolyte concentration and the dielectric constant of the solvent. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/b206305k |