Easily reversible desthiobiotin binding to streptavidin, avidin, and other biotin-binding proteins: uses for protein labeling, detection, and isolation
The high-affinity binding of biotin to avidin, streptavidin, and related proteins has been exploited for decades. However, a disadvantage of the biotin/biotin-binding protein interaction is that it is essentially irreversible under physiological conditions. Desthiobiotin is a biotin analogue that bi...
Gespeichert in:
Veröffentlicht in: | Analytical biochemistry 2002-09, Vol.308 (2), p.343-357 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The high-affinity binding of biotin to avidin, streptavidin, and related proteins has been exploited for decades. However, a disadvantage of the biotin/biotin-binding protein interaction is that it is essentially irreversible under physiological conditions. Desthiobiotin is a biotin analogue that binds less tightly to biotin-binding proteins and is easily displaced by biotin. We synthesized an amine-reactive desthiobiotin derivative for labeling proteins and a desthiobiotin–agarose affinity matrix. Conjugates labeled with desthiobiotin are equivalent to their biotinylated counterparts in cell-staining and antigen-labeling applications. They also bind to streptavidin and other biotin-binding protein-based affinity columns and are recognized by anti-biotin antibodies. Fluorescent streptavidin conjugates saturated with desthiobiotin, but not biotin, bind to a cell-bound biotinylated target without further processing. Streptavidin-based ligands can be gently stripped from desthiobiotin-labeled targets with buffered biotin solutions. Thus, repeated probing with fluorescent streptavidin conjugates followed by enzyme-based detection is possible. In all applications, the desthiobiotin/biotin-binding protein complex is easily dissociated under physiological conditions by either biotin or desthiobiotin. Thus, our desthiobiotin-based reagents and techniques provide some distinct advantages over traditional 2-iminobiotin, monomeric avidin, or other affinity-based techniques. |
---|---|
ISSN: | 0003-2697 1096-0309 |
DOI: | 10.1016/S0003-2697(02)00201-4 |