Apoptosis induced by dithiothreitol in HL-60 cells shows early activation of caspase 3 and is independent of mitochondria
Previous studies have shown that under certain conditions some thiol-containing compounds can cause apoptosis in a number of different cell lines. Herein, we investigated the apoptotic pathways in HL-60 cells triggered by dithiothreitol (DTT), used as a model thiol compound, and tested the hypothesi...
Gespeichert in:
Veröffentlicht in: | Cell Death and Differentiation 2000-10, Vol.7 (10), p.1002-1010 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies have shown that under certain conditions some thiol-containing compounds can cause apoptosis in a number of different cell lines. Herein, we investigated the apoptotic pathways in HL-60 cells triggered by dithiothreitol (DTT), used as a model thiol compound, and tested the hypothesis that thiols cause apoptosis via production of hydrogen peroxide (H2O2) during thiol oxidation. The results show that, unlike H2O2, DTT does not induce apoptosis via a mitochondrial pathway. This is demonstrated by the absence of early cytochrome c release from mitochondria into the cytosol, the lack of mitochondrial membrane depolarization at early times, and the minor role of caspase 9 in DTT-induced apoptosis. The first caspase activity detectable in DTT-treated cells is caspase 3, which is increased significantly 1 - 2 h after the start of DTT treatment. This was shown by following the cleavage of both a natural substrate, DFF-45/ICAD, and a synthetic fluorescent substrate, z-DEVD-AFC. Cleavage of substrates of caspases 2 and 8, known as initiator caspases, does not start until 3 - 4 h after DTT exposure, well after caspase 3 has become active and at a time when apoptosis is in late stages, as shown by the occurrence of DNA fragmentation to oligonucleosomal-sized pieces. Although oxidizing DTT can produce H2O2, data presented here indicate that DTT-induced apoptosis is not mediated by production of H2O2 and occurs via a novel pathway that involves activation of caspase 3 at early stages, prior to activation of the common 'initiator' caspases 2, 8 and 9. |
---|---|
ISSN: | 1350-9047 1476-5403 |
DOI: | 10.1038/sj.cdd.4400726 |