Comparison of several spray chambers operating at very low liquid flow rates in inductively coupled plasma atomic emission spectrometry

Four different spray chambers were evaluated in ICP-AES at very low liquid flow rates: a double-pass (Scott type), a conventional cyclonic, and two low-volume cyclonic-type spray chambers (i.e., Cinnabar and Genie). A glass concentric pneumatic micro nebulizer (Atom Mist) was used in conjunction wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fresenius' journal of analytical chemistry 2000-12, Vol.368 (8), p.773-779
Hauptverfasser: TODOLI, José-Luis, MAESTRE, Salvador, MORA, Juan, CANALS, Antonio, HERNANDIS, Vicente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four different spray chambers were evaluated in ICP-AES at very low liquid flow rates: a double-pass (Scott type), a conventional cyclonic, and two low-volume cyclonic-type spray chambers (i.e., Cinnabar and Genie). A glass concentric pneumatic micro nebulizer (Atom Mist) was used in conjunction with all four chambers. The liquid flow rate was varied from 10 to 160 microL min(-1). The conventional cyclonic spray chamber gave rise to coarser tertiary aerosols, higher analyte and solvent transport rates, higher sensitivity and lower limits of detection than the remaining ones. The low-volume spray chambers afforded analytical figures of merit similar to the double-pass one, despite their very different designs. However, these spray chambers exhibited shorter wash-out times. The matrix effects were significant only for the double-pass. This fact allowed the analysis of reference samples by employing aqueous standards at a minimum level of sample consumption. The recoveries obtained for the cyclonic spray chambers and several certified samples were close to 100%, being always lower in the case of the double-pass spray chamber.
ISSN:0937-0633
1432-1130
DOI:10.1007/s002160000583