RIBEYE, a Component of Synaptic Ribbons: A Protein's Journey through Evolution Provides Insight into Synaptic Ribbon Function
Photoreceptor cells utilize ribbon synapses to transmit sensory signals at high resolution. Ribbon synapses release neurotransmitters tonically, with a high release rate made possible by continuous docking of synaptic vesicles on presynaptic ribbons. We have partially purified synaptic ribbons from...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2000-12, Vol.28 (3), p.857-872 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photoreceptor cells utilize ribbon synapses to transmit sensory signals at high resolution. Ribbon synapses release neurotransmitters tonically, with a high release rate made possible by continuous docking of synaptic vesicles on presynaptic ribbons. We have partially purified synaptic ribbons from retina and identified a major protein component called RIBEYE. RIBEYE is composed of a unique A domain specific for ribbons, and a B domain identical with CtBP2, a transcriptional repressor that in turn is related to 2-hydroxyacid dehydrogenases. The A domain mediates assembly of RIBEYE into large structures, whereas the B domain binds NAD
+ with high affinity, similar to 2-hydroxyacid dehydrogenases. Our results define a unique component of synaptic ribbons and suggest that RIBEYE evolved in vertebrates under utilization of a preexisting protein to build a unique scaffold for a specialized synapse. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/S0896-6273(00)00159-8 |