Long-term feeding of formulas high in linolenic acid and marine oil to very low birth weight infants : phospholipid fatty acids

Red blood cell (RBC) phospholipids of infants fed human milk compared with formula have more arachidonic acid (AA) and docosahexanoic acid (DHA). The addition of low levels of marine oil to infant formula with 0.6 to 2.0% alpha-linolenic acid (LLA, 18:3n-3) prevented declines in DHA in formula-fed i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric research 1991-11, Vol.30 (5), p.404-412
Hauptverfasser: CARLSON, S. E, COOKE, R. J, RHODES, P. G, PEEPLES, J. M, WERKMAN, S. H, TOLLEY, E. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Red blood cell (RBC) phospholipids of infants fed human milk compared with formula have more arachidonic acid (AA) and docosahexanoic acid (DHA). The addition of low levels of marine oil to infant formula with 0.6 to 2.0% alpha-linolenic acid (LLA, 18:3n-3) prevented declines in DHA in formula-fed infants; however, the feeding trials were short (4 to 6 wk), LLA concentrations were low compared with current formulas (3.0 to 5.0% LLA), and the formulas were unstable. Trials with stable formulas were necessary to determine if dietary DHA could maintain phospholipid DHA after discharge from the hospital and, in fact, if it was necessary with higher intakes of LLA. The results of acute (4 wk) and extended (to 79 wk postconception) feeding of such formulas on RBC and plasma phospholipid AA and DHA are reported here. Control formulas were identical to commercially available formulas. Experimental formulas differed only in the addition of small amounts of marine oil. DHA in RBC and plasma phosphatidylethanolamine (PE) declined during four weeks of feeding but not if marine oil provided DHA (0.2% or 0.4%) and plasma phospholipid AA (g/100 g) decreased with time and marine oil feeding. Extended feeding with marine oil accounted for half the DHA in RBC and plasma phosphatidylethanolamine at equilibrium; however, RBC (g/100 g) and plasma AA (g/100 g; mg/L plasma) decreased progressively until late infancy and were depressed further by marine oil.
ISSN:0031-3998
1530-0447
DOI:10.1203/00006450-199111000-00003