A novel vented microisolation container for caging animals: microenvironmental comfort in a closed-system filter cage

We designed a closed-system cage with vent ports that would allow continuous airflow in the occupied cage to ensure adequate ventilation and gas exchange. In this system, the metabolic heat loads of mice generate upward thermal air currents. Heat exits via the exhaust port, and room air enters via t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contemporary topics in laboratory animal science 2000-01, Vol.39 (1), p.22-27
Hauptverfasser: Rivard, G F, Neff, D E, Cullen, J F, Welch, S W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We designed a closed-system cage with vent ports that would allow continuous airflow in the occupied cage to ensure adequate ventilation and gas exchange. In this system, the metabolic heat loads of mice generate upward thermal air currents. Heat exits via the exhaust port, and room air enters via the intake port, providing adequate ventilation. Simulations based on computational fluid dynamics (CFD) helped us to optimize the cage's design. CFD simulations and smoke visualizations with a feeder-trough assembly illustrated the one-pass air circulation pattern and the lack of air recirculation, turbulence, and dead air space in our system. We used hot-film anemometry and smoke-test methodologies to show that adequate ventilation was provided. In a room with still air (0 air changes per hour [ACH]), a cage fitted with double wire-cloth filters (40 mesh size) and occupied by five mice has at least 12 ACH, whereas the same cage occupied by one mouse has 6 ACH. After five mice had occupied the cage for a week, its average temperature was 0.58C, relative humidity was 34%, and ammonia concentration was 3 ppm higher than that of the room. Our novel vented microisolation cage provides adequate intracage ACH, isolates mice from environmental contaminants, and contains allergenic particles within the cage in an environment appropriate for the species.
ISSN:1060-0558