3D spatial compounding of ultrasound images using image-based nonrigid registration

Medical ultrasound images are often distorted enough to significantly limit resolution during compounding (i.e., summation of images from multiple views). A new, volumetric image registration technique has been used successfully to enable high spatial resolution in three-dimensional (3D) spatial com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in medicine & biology 2000-11, Vol.26 (9), p.1475-1488
Hauptverfasser: Krücker, Jochen F, Meyer, Charles R, LeCarpentier, Gerald L, Fowlkes, J.Brian, Carson, Paul L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Medical ultrasound images are often distorted enough to significantly limit resolution during compounding (i.e., summation of images from multiple views). A new, volumetric image registration technique has been used successfully to enable high spatial resolution in three-dimensional (3D) spatial compounding of ultrasound images. Volumetric ultrasound data were acquired by scanning a linear matrix array probe in the elevational direction in a focal lesion phantom and in a breast in vivo. To obtain partly uncorrelated views, the volume of interest was scanned at five different transducer tilt angles separated by 4° to 6°. Pairs of separate views were registered by an automatic procedure based on a mutual information metric, using global full affine and thin-plate spline warping transformations. Registration accuracy was analyzed automatically in the phantom data, and manually in vivo, yielding average registration errors of 0.31 mm and 0.65 mm, respectively. In the vicinity of the warping control points, registrations obtained with warping transformations were significantly more accurate than full affine registrations. Compounded images displayed the expected reduction in speckle noise and increase in contrast-to-noise ratio (CNR), as well as better delineation of connective tissues and reduced shadowing. Compounding also revealed some apparent low contrast lobulations that were not visible in the single-sweep images. Given expected algorithmic and hardware enhancements, nonrigid, image-based registration shows great promise for reducing tissue motion and refraction artifacts in 3D spatial compounding.
ISSN:0301-5629
1879-291X
DOI:10.1016/S0301-5629(00)00286-6