Probabilistic computation by neuromine networks

In this paper, we address the question, can biologically feasible neural nets compute more than can be computed by deterministic polynomial time algorithms? Since we want to maintain a claim of plausibility and reasonableness we restrict ourselves to algorithmically easy to construct nets and we rul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioSystems 2000-10, Vol.58 (1), p.167-176
Hauptverfasser: Hangartner, R.D., Cull, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we address the question, can biologically feasible neural nets compute more than can be computed by deterministic polynomial time algorithms? Since we want to maintain a claim of plausibility and reasonableness we restrict ourselves to algorithmically easy to construct nets and we rule out infinite precision in parameters and in any analog parts of the computation. Our approach is to consider the recent advances in randomized algorithms and see if such randomized computations can be described by neural nets. We start with a pair of neurons and show that by connecting them with reciprocal inhibition and some tonic input, then the steady-state will be one neuron ON and one neuron OFF, but which neuron will be ON and which neuron will be OFF will be chosen at random (perhaps, it would be better to say that microscopic noise in the analog computation will be turned into a megascale random bit). We then show that we can build a small network that uses this random bit process to generate repeatedly random bits. This random bit generator can then be connected with a neural net representing the deterministic part of randomized algorithm. We, therefore, demonstrate that these neural nets can carry out probabilistic computation and thus be less limited than classical neural nets.
ISSN:0303-2647
1872-8324
DOI:10.1016/S0303-2647(00)00120-9