Nonlinear analysis of brain activity in magnetic influenced Parkinson patients

Magnetoencephalogram (MEG) recordings were obtained from the brain of patients suffering from Parkinson's disease (PD) using the Superconductive Quantum Interference Device (SQUID). For each patient the magnetic activity was recorded from a total of 64 points of the skull (32 points from each t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain topography 2000, Vol.13 (2), p.135-144
Hauptverfasser: Anninos, P A, Adamopoulos, A V, Kotini, A, Tsagas, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetoencephalogram (MEG) recordings were obtained from the brain of patients suffering from Parkinson's disease (PD) using the Superconductive Quantum Interference Device (SQUID). For each patient the magnetic activity was recorded from a total of 64 points of the skull (32 points from each temporal lobe) as defined by a recording reference system, which is based on the 10-20 Electrode Placement System. Some of the recorded points were observed to exhibit abnormal rhythmic activity, characterized by high amplitudes and low frequencies. External magnetic stimulation (EMS) with intensity 1-7.5pT, and frequency the alpha-rhythm of the patient (8-13 Hz) was applied in the left-right temporal, frontal-occipital and vertex (2 minutes over each of the above regions) and the brain magnetic activity was recorded again. The application of the EMS resulted in rapid attenuation of the MEG activity of PD patients. Furthermore, chaotic dynamic methods were used, in order to estimate the correlation dimension D of the reconstructed phase spaces. The estimated values of D, in conjunction with the results derived from the other data analysis methods, strongly support the existence of low dimension chaotic structures in the dynamics of cortical activity of PD patients. In addition, the increased values of D of the MEG after the application of EMS when compared with the corresponding ones obtained from the MEGs prior to the EMS, suggest that the neural dynamics are strongly influenced by the application of EMS.
ISSN:0896-0267
1573-6792
DOI:10.1023/A:1026611219551