Linkage between the Hormone Binding Site and the Reactive Center Loop of Thyroxine Binding Globulin

Thyroxine binding globulin (TBG) is the major carrier of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) in plasma. TBG is member of the serpin family of proteins although it has no proteinase inhibitory activity. In this study we show that TBG has properties typical of a metastable se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 2000-12, Vol.384 (1), p.31-36
Hauptverfasser: Suda, Scott A., Gettins, Peter G.W., Patston, Philip A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thyroxine binding globulin (TBG) is the major carrier of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) in plasma. TBG is member of the serpin family of proteins although it has no proteinase inhibitory activity. In this study we show that TBG has properties typical of a metastable serpin and provide evidence that occupancy of the hormone binding site alters the conformation of the reactive center loop. After reactive center loop cleavage by endoproteinase Asp-N or neutrophil elastase the protein became more stable to guanidine hydrochloride denaturation compared to the native protein, as a result of loop insertion. In addition, incubation of the native protein with a reactive center loop peptide, caused a change in mobility on a native gel. This is consistent with the idea that thyroxine binding globulin is able to form a binary complex with the peptide as a result of β-sheet A expansion. To assess the effect of cleavage and loop insertion on the hormone binding site we used the specific binding of a fluorophore, 1,8-anilinonaphthalene sulfonic acid (ANS). Loop insertion itself had no effect on ANS affinity, but cleavage with elastase at the P4′–P5′ bond caused a reduction in affinity, presumably because this cleavage site is located within the hormone binding site. These data support the concept that cleavage of TBG by proteinases released in inflammation is a mechanism to deliver thyroid hormones to target tissues. A linkage between the occupancy state of the hormone binding site and the conformation of the reactive center loop was indicated by the observation that binding of T3 to native TBG reduced proteolytic susceptibility by both endoproteinase Asp-N and elastase.
ISSN:0003-9861
1096-0384
DOI:10.1006/abbi.2000.2110