Latrophilin, Neurexin, and Their Signaling-deficient Mutants Facilitate α-Latrotoxin Insertion into Membranes but Are Not Involved in Pore Formation

Pure α-latrotoxin is very inefficient at forming channels/pores in artificial lipid bilayers or in the plasma membrane of non-secretory cells. However, the toxin induces pores efficiently in COS-7 cells transfected with the heptahelical receptor latrophilin or the monotopic receptor neurexin. Signal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-12, Vol.275 (52), p.41175-41183
Hauptverfasser: Volynski, Kirill E., Meunier, Frédéric A., Lelianova, Vera G., Dudina, Ekaterina E., Volkova, Tatyana M., Rahman, M. Atiqur, Manser, Catherine, Grishin, Eugene V., Dolly, J. Oliver, Ashley, Richard H., Ushkaryov, Yuri A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pure α-latrotoxin is very inefficient at forming channels/pores in artificial lipid bilayers or in the plasma membrane of non-secretory cells. However, the toxin induces pores efficiently in COS-7 cells transfected with the heptahelical receptor latrophilin or the monotopic receptor neurexin. Signaling-deficient (truncated) mutants of latrophilin and latrophilin-neurexin hybrids also facilitate pore induction, which correlates with toxin binding irrespective of receptor structure. This rules out the involvement of signaling in pore formation. With any receptor, the α-latrotoxin pores are permeable to Ca2+ and small molecules including fluorescein isothiocyanate and norepinephrine. Bound α-latrotoxin remains on the cell surface without penetrating completely into the cytosol. Higher temperatures facilitate insertion of the toxin into the plasma membrane, where it co-localizes with latrophilin (under all conditions) and with neurexin (in the presence of Ca2+). Interestingly, on subsequent removal of Ca2+, α-latrotoxin dissociates from neurexin but remains in the membrane and continues to form pores. These receptor-independent pores are inhibited by anti-α-latrotoxin antibodies. Our results indicate that (i) α-latrotoxin is a pore-forming toxin, (ii) receptors that bind α-latrotoxin facilitate its insertion into the membrane, (iii) the receptors are not physically involved in the pore structure, (iv) α-latrotoxin pores may be independent of the receptors, and (v) pore formation does not require α-latrotoxin interaction with other neuronal proteins.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M005857200