Biological Properties of Herpes Simplex Virus 2 Replication-Defective Mutant Strains in a Murine Nasal Infection Model
We used a mouse nasal model of herpes simplex virus 2 (HSV-2) infection to examine the biological properties of HSV-2 wild-type (wt), TK-negative, and replication-defective strains in vivo. Nasal septa tissue is the major site of wt viral replication post intranasal (i.n.) inoculation. The HSV-2 str...
Gespeichert in:
Veröffentlicht in: | Virology (New York, N.Y.) N.Y.), 2000-12, Vol.278 (1), p.137-150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We used a mouse nasal model of herpes simplex virus 2 (HSV-2) infection to examine the biological properties of HSV-2 wild-type (wt), TK-negative, and replication-defective strains in vivo. Nasal septa tissue is the major site of wt viral replication post intranasal (i.n.) inoculation. The HSV-2 strain 186 syn+-1 wt virus caused lethal encephalitis at doses of 104 PFU and above per nostril, and at lower doses no neurons in the trigeminal ganglia were positive for the latency-associated transcript, indicating a lack of latent infection. The 186ΔKpn TK-negative mutant virus replicated in nasal septa tissue but showed low-level replication in trigeminal ganglia at only one timepoint. In situ hybridization of trigeminal ganglia showed that the number of LAT-positive neurons was proportional to the inoculum dose from 103 to 106 PFU per nare. The replication-defective mutant virus 5BlacZ showed no replication in nasal septa tissue and no persistence of viral DNA at the inoculation site or the trigeminal ganglia. Nevertheless, inoculation of 5BlacZ or the double-mutant dl5-29 at distal sites reduced acute replication and latent infection of 186ΔKpn following intranasal challenge. This infection model provides a biological system to test the properties of HSV-2 strains and shows that replication-defective mutant strains do not persist at sites of inoculation or in sensory ganglia but can induce immune protection that reduces the latent viral load of a challenge virus. |
---|---|
ISSN: | 0042-6822 1096-0341 |
DOI: | 10.1006/viro.2000.0628 |