The reversal potential of Ca(2+)-activated Cl(-) currents indicates that chick sensory neurons accumulate intracellular Cl(-)
In order to establish the physiological role of the Ca(2+)-activated Cl(-) current (I(Cl(Ca))) of chick primary afferent neurons, I measured the reversal potential of this current using either the amphotericin perforated patch technique (that alters intracellular Cl(-)) or the gramicidin perforated...
Gespeichert in:
Veröffentlicht in: | Neuroscience letters 2000-12, Vol.296 (1), p.9-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to establish the physiological role of the Ca(2+)-activated Cl(-) current (I(Cl(Ca))) of chick primary afferent neurons, I measured the reversal potential of this current using either the amphotericin perforated patch technique (that alters intracellular Cl(-)) or the gramicidin perforated patch technique (that does not perturb intracellular Cl(-)). In the amphotericin experiments at 35 degrees C, I(Cl(Ca)) reversed at the Cl(-) equilibrium potential (E(Cl)=-24 mV) set by the superfusate (147 mM Cl(-)) and the pipette solution (60 mM Cl(-)). In contrast, in the gramicidin experiments at 35 degrees C, I(Cl(Ca)) reversed at -42+/-2 mV, midway between E(Cl) of the solutions and E(Cl) expected if Cl(-) were passively distributed. Thus the gramicidin perforated patch technique monitors Cl(-) currents without perturbing intracellular Cl(-). Further, the data imply that chick dorsal root ganglia (DRG) neurons actively accumulate Cl(-). I(Cl(Ca)) reversed at the same potential (-46+/-3 mV) at 20 degrees C indicating that the non-equilibrium distribution of Cl(-) is maintained at the lower temperature. Thus, I(Cl(Ca)) is a depolarizing current that can contribute to the after-depolarization in chick DRG neurons and thereby alter Ca(2+) influx. |
---|---|
ISSN: | 0304-3940 |
DOI: | 10.1016/S0304-3940(00)01610-4 |