Effect of n−3 fatty acid deficiency on fatty acid composition and metabolism of aminophospholipids in rat brain synaptosomes

Docosahexaenoic acid (DHA, 22∶6n−3) is one of the major polyunsaturated fatty acids esterified predominantly in aminophospholipids such as ethanolamine glycerophospholipid (EtnGpl) and serine glycerophospholipid (SerGpl) in the brain. Synaptosomes prepared from rats fed an n−3 fatty acid‐deficient s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lipids 2000-10, Vol.35 (10), p.1107-1115
Hauptverfasser: Ikemoto, Atsushi, Ohishi, Masayo, Hata, Noriaki, Misawa, Yoshihisa, Fujii, Yoichi, Okuyama, Harumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Docosahexaenoic acid (DHA, 22∶6n−3) is one of the major polyunsaturated fatty acids esterified predominantly in aminophospholipids such as ethanolamine glycerophospholipid (EtnGpl) and serine glycerophospholipid (SerGpl) in the brain. Synaptosomes prepared from rats fed an n−3 fatty acid‐deficient safflower oil (Saf) diet had significantly decreased 22∶6n−3 content with a compensatory increased 22∶5n−6 content when compared with rats fed an n−3 fatty acid‐sufficient perilla oil (Per) diet. When the Saf group was shifted to a diet supplemented with safflower oil plus 22∶6n−3 (Saf+DHA) after weaning, 22∶6n−3 content was found to be restored to the level of the Per group. The uptake of [3H]ethanolamine and its conversion to [3H]EtnGpl did not differ significantly among the three dietary groups, whereas the formation of [3H]lysoEtnGpl from [3H]ethanolamine was significantly lower in the Saf group than in the other groups. The uptake of [3H]serine, its incorporation into [3H]SerGpl, and the conversion into [3H]EtnGpl by decarboxylation of [3H]SerGpl did not differ among the three dietary groups. The observed decrease in lysoEtnGpl formation associated with a reduction of 22∶6n−3 content in rat brain synaptosomes by n−3 fatty acid deprivation may provide a clue to reveal biochemical bases for the dietary fatty acids‐behavior link.
ISSN:0024-4201
1558-9307
DOI:10.1007/s11745-000-0626-7