Perilipin A Increases Triacylglycerol Storage by Decreasing the Rate of Triacylglycerol Hydrolysis

The perilipins are the most abundant proteins at the surfaces of lipid droplets in adipocytes and are also found in steroidogenic cells. To investigate perilipin function, perilipin A, the predominant isoform, was ectopically expressed in fibroblastic 3T3-L1 pre-adipocytes that normally lack the per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-12, Vol.275 (49), p.38486-38493
Hauptverfasser: Brasaemle, D L, Rubin, B, Harten, I A, Gruia-Gray, J, Kimmel, A R, Londos, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The perilipins are the most abundant proteins at the surfaces of lipid droplets in adipocytes and are also found in steroidogenic cells. To investigate perilipin function, perilipin A, the predominant isoform, was ectopically expressed in fibroblastic 3T3-L1 pre-adipocytes that normally lack the perilipins. In control cells, fluorescent staining of neutral lipids with Bodipy 493/503 showed a few minute and widely dispersed lipid droplets, while in cells stably expressing perilipin A, the lipid droplets were more numerous and tightly clustered in one or two regions of the cytoplasm. Immunofluorescence microscopy revealed that the ectopic perilipin A localized to the surfaces of the tiny clustered lipid droplets; subcellular fractionation of the cells using sucrose gradients confirmed that the perilipin A localized exclusively to lipid droplets. Cells expressing perilipin A stored 6–30-fold more triacylglycerol than control cells due to reduced lipolysis of triacylglycerol stores. The lipolysis of stored triacylglycerol was 5 times slower in lipid-loaded cells expressing perilipin A than in lipid-loaded control cells, when triacylglycerol synthesis was blocked with 6 μ m triacsin C. This stabilization of triacylglycerol was not due to the suppression of triacylglycerol lipase activity by the expression of perilipin A. We conclude that perilipin A increases the triacylglycerol content of cells by forming a barrier that reduces the access of soluble lipases to stored lipids, thus inhibiting triacylglycerol hydrolysis. These studies suggest that perilipin A plays a major role in the regulation of triacylglycerol storage and lipolysis in adipocytes.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M007322200