A fully functional rod visual pigment in a blind mammal. A case for adaptive functional reorganization?
In the blind subterranean mole rat Spalax ehrenbergi superspecies complete ablation of the visual image-forming capability has been accompanied by an expansion of the bilateral projection from the retina to the suprachiasmatic nucleus. We have cloned the open reading frame of a visual pigment from S...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2000-12, Vol.275 (49), p.38674-38679 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the blind subterranean mole rat Spalax ehrenbergi superspecies complete ablation of the visual image-forming capability has been accompanied by an expansion of the bilateral projection from the retina to the suprachiasmatic nucleus. We have cloned the open reading frame of a visual pigment from Spalax that shows >90% homology with mammalian rod pigments. Baculovirus expression yields a membrane protein with all functional characteristics of a rod visual pigment (lambda(max) = 497 +/- 2 nm; pK(a) of meta I/meta II equilibrium = 6.5; rapid activation of transducin in the light). We not only provide evidence that this Spalax rod pigment is fully functional in vitro but also show that all requirements for a functional pigment are present in vivo. The physiological consequences of this unexpected finding are discussed. One attractive option is that during adaptation to a subterranean lifestyle, the visual system of this mammal has undergone mosaic reorganization, and the visual pigments have adapted to a function in circadian photoreception. |
---|---|
ISSN: | 0021-9258 |
DOI: | 10.1074/jbc.M008254200 |