Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-gamma

We have previously shown that systemic staphylococcal enterotoxin A (SEA) injections cause CD4 T cells in TCR-transgenic mice to become tolerant to subsequent ex vivo restimulation. An active IFN-gamma-dependent mechanism of suppression was responsible for the apparent unresponsiveness of the CD4 T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2000-12, Vol.165 (11), p.6056-6066
Hauptverfasser: Cauley, L S, Miller, E E, Yen, M, Swain, S L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have previously shown that systemic staphylococcal enterotoxin A (SEA) injections cause CD4 T cells in TCR-transgenic mice to become tolerant to subsequent ex vivo restimulation. An active IFN-gamma-dependent mechanism of suppression was responsible for the apparent unresponsiveness of the CD4 T cells. In this study, we analyze the response of CD4 T cells isolated throughout the first 10 days of the in vivo response to injected SEA. We show that CD4 T cells isolated at the peak of the in vivo response undergo very little activation-induced cell death after sterile FACS sorting or restimulation in the presence of neutralizing Abs to IFN-gamma. We also show that the IFN-gamma-dependent tolerance develops soon after SEA injection in the spleens of both normal and TCR-transgenic mice. This suppression is dependent upon myeloid cells from the SEA-treated mice and is optimal when inducible NO synthase activity and reactive oxygen intermediates are both present. The data indicate that IFN-gamma, myeloid cells, and a combination of NO and reactive oxygen intermediates all contribute to a common pathway of T cell death that targets activated or responding CD4 T cells. Sorted Gr-1(+) cells from SEA-treated mice also directly suppress the response of naive CD4 T cells in mixed cultures, indicating that this tolerance mechanism may play a role in down-regulating other vigorous immune responses.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.165.11.6056