Collagen structure and nonlinear susceptibility: Effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity

Background and Objective Helical macromolecules such as collagen and DNA are characterized by nonlinear optical properties, including nonlinear susceptibility. Because collagen is the predominant component of most biological tissues, as well as the major source of second harmonic generation (SHG), i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in surgery and medicine 2000, Vol.27 (4), p.329-335
Hauptverfasser: Kim, Beop-Min, Eichler, Jürgen, Reiser, Karen M., Rubenchik, Alexander M., Da Silva, Luiz B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and Objective Helical macromolecules such as collagen and DNA are characterized by nonlinear optical properties, including nonlinear susceptibility. Because collagen is the predominant component of most biological tissues, as well as the major source of second harmonic generation (SHG), it is reasonable to assume that changes in harmonic signal can be attributed to structural changes in collagen. The purpose of this study is to determine whether various modifications of collagen structure affect second harmonic intensity. Study Design/Materials and Methods SHG was measured in tissues from cows, humans, and chickens. The effects of beam polarization, thermal denaturation, glyco‐oxidative damage, and enzymatic cleavage of tissues on second harmonic intensity was studied. Results The second harmonic intensity differed considerably among different tissues, as did the effect of the incident beam polarization. In structurally modified collagen, SHG was significantly degraded from SHG in intact collagen. Conclusion These structural modifications are representative of changes that occur in pathophysiologic conditions such as thermal injury, diabetes, tumor invasion, and abnormal wound healing. The ability to assess these changes rapidly and noninvasively has considerable clinical applicability. SHG analysis might provide a unique tool for monitoring these structural changes of collagen. Lasers Surg. Med. 27:329–335, 2000. Published 2000 Wiley‐Liss, Inc.
ISSN:0196-8092
1096-9101
DOI:10.1002/1096-9101(2000)27:4<329::AID-LSM5>3.0.CO;2-C