The involvement of vascular endothelial growth factor and flt-1 in the process of neointimal proliferation in pig coronary arteries following stent implantation
To clarify the role of vascular endothelial growth factor (VEGF) in the process of restenosis, a Palmaz-Schatz stent was implanted in the left anterior descending coronary artery of male pigs at 2 weeks after balloon injury (balloon/artery ratio 1.2:1). The animals were euthanized at 1, 2, and 4 wee...
Gespeichert in:
Veröffentlicht in: | Histochemistry and cell biology 2001-12, Vol.116 (6), p.471-481 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To clarify the role of vascular endothelial growth factor (VEGF) in the process of restenosis, a Palmaz-Schatz stent was implanted in the left anterior descending coronary artery of male pigs at 2 weeks after balloon injury (balloon/artery ratio 1.2:1). The animals were euthanized at 1, 2, and 4 weeks after stenting, and western blot and immunohistochemical analysis were performed using VEGF, fms-like tyrosine kinase (flt)-1, and platelet-derived growth factor (PDGF) antibodies. The expressions of VEGF and flt-1 protein in the neointima were observed as early as 1 week after stenting and remained for up to 4 weeks, while re-endothelialization was complete at 2 weeks. These protein expressions were demonstrated in proliferated smooth muscle cells throughout the entire period after stenting and, in addition, they were observed in the macrophages and endothelial cells of microvessels around stent struts at 4 weeks. The expression pattern of VEGF corresponded with that of PDGF, a growth factor well-known to induce neointimal proliferation. The cell proliferative activity, measured by the proliferating cell nuclear antigen index, around the struts remained high until 4 weeks after stenting, while that in the other areas declined at 4 weeks. These results suggest that VEGF is involved in the process of restenosis not only through its angiogenic properties and induction of monocyte chemotaxis, but also by a synergistic effect with PDGF. |
---|---|
ISSN: | 0948-6143 1432-119X |
DOI: | 10.1007/s00418-001-0336-4 |